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Noniterative Method to Approximate the Effective
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Abstract—The effective load carrying capability (ELCC) is con-
sidered the preferred metric to evaluate the capacity value of added
wind generation. However, the classical method of computing this
metric requires substantial reliability modeling and an iterative
process that is quite computationally intensive. Consequently, a
noniterative method of estimating a wind plant’s ELCC is proposed
in this paper. Inspired by Garver’s approximation and derived
based on well-known reliability concepts, the proposed method
provides an excellent approximation while requiring only mini-
mal reliability modeling and no computationally-intensive itera-
tive process. It computes ELCC estimates from a single function
using only the wind plant’s multistate probabilistic representation
and a graphically determined parameter that characterizes the ex-
isting power system. After presenting the complete mathematical
derivation of this function, the method is applied to compute the
ELCC estimates of various wind plants at different penetration
levels. It is shown that the resultant ELCC estimates only slightly
overestimate the classically computed values by relative errors of
2.5% or less. Furthermore, the proposed method yields more ac-
curate ELCC estimates than the capacity factor approximation,
which is commonly used to approximate the ELCC of a wind
plant.

Index Terms—Approximation methods, capacity value, effective
load carrying capability (ELCC), power generation planning, reli-
ability, wind power generation.

NOMENCLATURE

CA,E ,P Nameplate capacity for the additional generation;
existing and potential systems [megawatt].

Cj , pj Partial capacity outage states [megawatt] and corre-
sponding individual probability.

COPT Capacity outage probability table; P (XE > x) or
P (XP > x).

COIPT Capacity outage individual probability table; Table of
Cj and pj values of multistate unit.

E Index for the existing system.
ELCC Effective load carrying capability [percent].
k Number of partial capacity outage states.
∆L Amount of extra load that can be served by the addi-

tional generation [megawatt].
Li Load demand condition [megawatt] of time duration

ti [e.g., hour].
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LOLE Loss-of-load expectation [days per year].
LOLP Loss-of-load probability.
n Number of ti in the evaluation period [e.g., hours/

year].
P Index for the potential system.
XE,P Discrete random variable representing the possible

capacity outage states of the existing and potential
systems [megawatt].

I. INTRODUCTION

S EVERAL studies have identified the effective load carrying
capability (ELCC) as being the preferred metric to evaluate

the capacity value of wind generation [1]–[4]. Although accu-
rate, this metric requires substantial reliability modeling and
an iterative process that is computationally intensive. Conse-
quently, interest has emerged in proposing simpler methods to
approximate a wind plant’s ELCC. These simpler methods can
be especially useful when performing preliminary investigation
of wind generation expansions. The noniterative method pro-
posed in this paper requires minimal reliability modeling and
is less computationally intensive than the classical ELCC com-
puting method.

Various risk-based and time-period-based approximation
methods have been proposed to estimate a wind plant’s ELCC
[1]–[4]. Among the risk-based methods is Garver’s approxima-
tion, a graphical method of estimating the ELCC of conventional
generating units [5]. This approximation is mathematically de-
rived using a two-state representation to model the additional
conventional unit. Although modeling a generating unit as be-
ing either fully ON or fully OFF is appropriate for conventional
generation, it is not well suited for variable output generation.
Therefore, the novel method introduced in this paper is adapted
from Garver’s approximation but models the additional unit with
a multistate representation. As for Garver’s approximation, the
proposed method uses a graphically-determined parameter and
is based on known reliability probabilistic concepts such as ca-
pacity outage probability table (COPT), loss-of-load probability
(LOLP), and loss-of load expectation (LOLE) [6].

Since the ELCC concept has been implemented in slightly
different ways, we will start by defining the classical computing
method used in this study. Then, we will derive the novel approx-
imation method using known reliability probabilistic concepts.
We will compare the classical and approximation methods by
computing the ELCC of several wind plants at various penetra-
tion levels. Finally, our ELCC estimates will be compared to
the wind plant’s capacity factor, a current way of estimating the
capacity value of wind generation [1].
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II. EFFECTIVE LOAD CARRYING CAPABILITY OF A WIND

PLANT: A CLASSICAL COMPUTING METHOD

In generation expansion studies, when a new generating unit
is to be added to an existent power system, the effective load
carrying capability (ELCC) of this unit will be the amount of
extra load that can be served while keeping a designated level
of reliability. The designated level is usually the loss-of-load
expectation (LOLE) of the system before the addition of the
new generating unit. It assumes the existing system is already
well planned. Therefore, when equating the LOLEs of the ex-
isting and potential systems, the concept of ELCC is classically
represented by the following expressions

LOLEE = LOLEP

or
n∑

i=1

P (XE > CE − Li) × ti =
n∑

i=1

P (XP > (CE + CA )

− (Li + ∆L)) × ti (1)

where ∆L is the extra load that can be served by the ad-
ditional generation. P (XE > CE − Li) and P (XP > (CE +
CA ) − (Li + ∆L)) are the loss-of-load probabilities (LOLPs)
of the existing and potential system. These LOLPs represent the
probabilities of having a capacity outage greater than CE − Li

and (CE + CA ) − (Li + ∆L), the conditions when a loss of
load would occur in each system. The cumulative probabilities
P (XE > x) and P (XP > x) are obtained from each system’s
capacity outage probability table (COPT). This table models the
system’s generation reliability.1 Due to the discrete nature of the
resultant LOLPs, (1) is best solved iteratively. Consequently,
multiple LOLE calculations must be performed for various val-
ues of ∆L before the correct value resulting in the chosen LOLE
is found. Note that this iterative process is, in part, what makes
the ELCC metric a computationally-intensive calculation.

Once (1) is solved for ∆L, the ELCC of the additional gen-
erator is usually expressed as the percentage of the extra load
over the added generator’s nameplate capacity

ELCC =
∆L

CA
× 100%. (2)

The classical method of implementing the ELCC concept de-
scribed in this section can be altered depending on how wind
generation is integrated to the power system’s reliability model.
Essentially, there are two ways of integrating wind generation
into the model: the multistate (or prospective) approach and the
load adjustment (or retrospective) approach [1]. While the load
adjustment approach integrates wind as a negative load, the mul-
tistate approach takes a more probability-oriented perspective.
In this approach, wind generation is incorporated in the potential
system’s COPT as a multistate unit that can exist in one or more
partial capacity outage states. Since the proposed method mod-
els wind as a multistate generating unit, to give better grounds
for comparison, the multistate approach will also be used when

1 [6] gives a good review on the reliability concepts of COPT, LOLE, and
LOLP.

classically computing the ELCC of a wind plant. In doing so,
the classical computing method can be applied as described in
this section with no alterations.

III. EFFECTIVE LOAD CARRYING CAPABILITY OF A WIND

PLANT: A NON-ITERATIVE COMPUTING METHOD

A. Basis

Garver’s approach [5] proposed a way to simplify ELCC cal-
culations for conventional generation. Indeed, the ELCC of an
additional conventional unit was approximated using graphical
aids and a graphically-determined parameter. This parameter
characterized the existing system’s loss-of-load probability as a
function of reserve and reduced the number of reliability cal-
culations needed. Although the approximation focused on the
graphical aids, the most interesting aspect about this method
was the mathematically derived function used to create these
graphs: from a simple equation one could obtain an accurate
ELCC estimate. The derivation of this function was based on
well-known probability concepts, but, unfortunately, modeled
the additional unit with a two-state representation. Although
this representation is appropriate for conventional generation,
modeling wind generation by being either fully ON or OFF is
not an adequate representation. Therefore, using an analogous
approach, a function estimating the ELCC of variable output
generation was developed while modeling this generation with
a more appropriate multistate representation.

Similar to Garver’s expression, our derived function is
based on well-known probability concepts and uses the addi-
tional unit’s reliability characteristics as well as a graphically-
determined parameter. Our parameter, however, characterizes
the existing system’s loss-of-load probability as a function of
load demand. The first step to our method consists of determin-
ing this parameter.

B. Graphical Parameter

The graphical parameter is obtained from a plot that illus-
trates how the existing system’s LOLE changes for an increase
or decrease in load demand. First, different load duration curves
are created as variants of the system’s typical load demand.
They are produced by positively or negatively shifting the typ-
ical load duration curve. Consequently, each new curve has the
same overall variability as the typical load duration curve (e.g.,
summer and winter peaks). The shift is chosen as a percentage
of the typical peak load. Each load duration curve is computed
using the following expression:

Lc = Lt ± c · Ltp k (3)

where Lc is a new load duration curve, Lt is the typical load
duration curve with peak load Ltp k , and c is a percentage. The
existing system’s LOLE is then computed for each new load
demand. Subsequently, the resulting LOLE values are plotted
as a function of the typical and new load duration curves. In
this graph, all load duration curves are represented by their
peak load; although the actual LOLE calculation is performed
using the whole curve. Once these results are plotted, the data



546 IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 23, NO. 2, JUNE 2008

points are curve-fitted with an exponential relationship.2 The
relationship abides by the following equation

LOLELp k = B × em×Lp k (4)

where Lpk is the peak load of the load duration curve, B is
the pre-exponential coefficient, and m is defined as the system’s
graphical parameter with units of MW−1 . The value of the m pa-
rameter is determined by any exponential curve fitting method.
The derivation will unveil that the B parameter is inconsequen-
tial to this analysis. Along with basic probability concepts of
reliability theory [6], the exponential relationship will be used
to mathematically derive an ELCC estimating function for vari-
able output generation. The steps of this derivation are presented
in the next section.

C. Mathematical Derivation

When an additional variable output generator is modeled as
a multistate unit, the COPT of the potential system after the
addition of this new generating unit can be represented by the
following cumulative probabilities P (XP > x):

P (XP > x) =
k∑

j=1

pj × P (XE > x − Cj ) (5)

where P (XE > x − Cj ) represents the existing system’s cu-
mulative probability of having a capacity outage greater than
(x − Cj ). This cumulative probability is obtained from the
COPT of the existing system.

Given a particular load duration curve identified by its peak
load Lpk , the LOLE of the potential system can be expressed as

LOLEP,Lp k =
n∑

i=1

P (XP > CP − Li) × ti (6)

where P (XP > CP − Li) is the LOLP for the load condition Li

of duration ti and n is the number of ti in the chosen evaluation
period.

Since the term P (XP > CP − Li) in (6) is equivalent to the
term P (XP > x) in (5), when x equals CP − Li , it can be
replaced by

P (XP > CP − Li) =
k∑

j=1

pj × P (XE > CP − Li − Cj ).

(7)
This substitution enables the LOLE of the potential system to

be expressed as a function of the existent system’s COPT rather
than its own COPT. After expanding the summation term in (7)
and substituting in (6), this equation becomes

LOLEP,Lp k =
n∑

i=1

[p1 × P (XE > CP − Li − C1)

+ p2 × P (XE > CP − Li − C2) . . .

+ pk × P (XE > CP − Li − Ck )] × ti . (8)

2Garver suggested that an exponential relationship could accurately approx-
imate how a power system’s LOLE responds to a shift in load demand [5].

The total capacity of the potential system CP is equivalent to
the total capacity of the existing system CE plus the nameplate
capacity of the added unit CA ; therefore, (8) can be rewritten as

LOLEP,Lp k =
n∑

i=1

[p1 × P (XE > CE + CA − Li − C1)

+ p2 × P (XE > CE + CA − Li − C2) . . .

+ pk × P (XE > CE + CA − Li − Ck )] × ti .

(9)

By rearranging and distributing the summation, (9) becomes

LOLEP,Lp k = p1 ×
n∑

i=1

[P (XE >CE − (Li+C1 −CA ))] × ti

+ p2 ×
n∑

i=1

[P (XE > CE − (Li + C2 − CA ))] × ti . . .

+ pk ×
n∑

i=1

[P (XE > CE − (Li + Ck − CA ))] × ti . (10)

Each one of the k summation terms in (10) is equivalent to
the existing system’s LOLE computed for a load duration curve
with a peak load value of Lpk + Cj − CA . In turns, each of
these k load duration curves is equivalent to a load duration
curve of peak load Lpk , which is shifted by adding a constant
Cj − CA ; this constant is added to each hourly load data Li .
From this observation, (10) is rewritten as

LOLEP,Lp k = p1 × LOLEE ,Lp k +C1 −CA

+ p2 × LOLEE ,Lp k +C2 −CA
. . .

+ pk × LOLEE ,Lp k +Ck −CA
. (11)

Because of the shifted change in the load duration curve, each
LOLELp k +Cj −CA

term in (11) can be replaced by its respective
exponential approximation using (4) and the equation becomes

LOLEP,Lp k = p1 × B × em×(Lp k +C1 −CA )

+ p2 × B × em×(Lp k +C2 −CA ) . . .

+ pk × B × em×(Lp k +Ck −CA ) . (12)

Using exponential identities, B × em×Lp k is isolated and
replaced by (4) so that (12) can be rewritten as

LOLEP,Lp k = LOLEE ,Lp k × [p1 × em×(C1 −CA )

+ p2 × em×(C2 −CA ) · · · + pk × em×(Ck −CA ) ].

(13)

The concept of ELCC described in Section III comes into
play. Recall that the ELCC of an additional generator represents
the extra load that can be served while keeping the designated
level of reliability, usually the LOLE of the existing system
calculated with its typical load duration curve. Therefore, we
can express this as

LOLEP,Lt p k +∆L = LOLEE ,Lt p k
(14)
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where Ltp k + ∆L is the typical load duration curve to which
is added a constant extra load ∆L to each hourly load data.3

Contracting the pj × em×(Cj −CA ) terms and replacing the gen-
eral load duration curve Lpk by the specific load duration curve
Ltp k + ∆L, (13) is rewritten as

LOLEP,Lt p k +∆L = LOLEE ,Lt p k +∆L ×
k∑

j=1

pj × em×(Cj −CA ) .

(15)
Using (4), (15) becomes

LOLEP,Lt p k +∆L = B × em×(Lt p k +∆L) ×
k∑

j=1

pj× em×(Cj −CA).

(16)
Once again, using exponential identities, (16) is rearranged as

LOLEP,Lt p k +∆L = B × em×Lt p k × em×∆L

×
k∑

j=1

pj × em×(Cj −CA ) (17)

which finally reduces to

LOLEP,Lt p k +∆L = LOLEE ,Lt p k
× em×∆L

×
k∑

j=1

pj × em×(Cj −CA ) . (18)

Applying the ELCC concept given by (14), (18) becomes

1 = em×∆L ×
k∑

j=1

pj × em×(Cj −CA ) . (19)

Finally, the natural logarithm is taken on both sides of the
equation to isolate ∆L and we obtain the ∆L estimating
function

∆L =
1
m

×


−ln


 k∑

j=1

pj × em×(Cj −CA )





 . (20)

Using (2) and (20), the ELCC of an additional multistate unit of
nameplate capacity CA modeled by k possible capacity outage
states Cj with corresponding individual probability pj can now
be estimated given the existing power system’s m parameter

ELCC =


−ln


 k∑

j=1

pj × em×(Cj −CA )





 × 100%

m × CA
. (21)

Note that (21) can also be used for two-state units whose
unavailability is represented by their forced outage rate (FOR).
Indeed, for a two-state unit of capacity CA , there exist two
possible capacity outage states Cj . Since two-state units are
either fully ON or fully OFF, we can replace C1 by 0, p1 by (1 −
FOR), C2 by CA , and p2 by FOR. Equation (21) is, therefore,

3The typical load duration curve, which is positively shifted by ∆L.

reduced to

ELCC = [−ln[(1 − FOR) × e−m×CA + FOR]] × 100%
m × CA

.

(22)
This expression is analogous to Garver’s approximation al-
though the m parameter and risk basis are different.

IV. CASE STUDY

In this section, the noniterative approximation will be applied
in a case study. The resultant ELCC estimates will be compared
to the classically computed values as well as to the capacity
factor, a common ELCC estimate.

A. Existing System Reliability Model

The existing system used in this case study is based on a re-
alistic power system; it consists of 16 conventional generating
units ranging from 22 to 555 MW and has a total nameplate ca-
pacity of 2728 MW. For the scope of this analysis, we consider
all generators to be base-load units that are committed during the
full year. Each generator is modeled with the two-state represen-
tation of being either fully ON or fully OFF and its unavailability
is expressed by its FOR. The North American Electric Relia-
bility Council “Generating Availability Data System” provided
relevant FOR values for the various types of generators and gen-
erator capacities [7]. Using the generator capacities along with
the corresponding FOR values, the generation reliability model
of the existing system, or COPT, was built following the basic
probability theories in [6]. The resultant COPT is composed of
1721 possible capacity outage states and provides the cumula-
tive probability associated with a capacity outage greater than
a determined value. The various wind plants described in the
following section will be added to this existing power system.

B. Wind Generation Reliability Model

As mentioned previously, the multistate unit approach is used
to model the variable nature of wind generation. This approach
consists of representing the wind plant as a multistate unit that
can exist in one or more partial capacity outage states Cj with
corresponding individual probability pj . From applying this ap-
proach, a capacity outage individual probability table (COIPT)
is created to represent the wind plant. The COIPT consists of
the individual probability of having a capacity outage equal to a
determined value. The COIPT is built at a chosen resolution de-
scribed as the number of megawatt between two capacity outage
states. The lower the resolution, the greater the number of par-
tial output states, and the better the wind plant is modeled. For
example, at a resolution of 2 MW, a 20 MW wind plant would
be modeled by 11 partial capacity outage states: C1 = 0 MW,
C2 = 2 MW, . . . C9 = 16 MW, C10 = 18 MW, C11 = CA =
20 MW. Using the wind plant’s power output data, the individual
probability pj associated with the partial capacity outage state
Cj is calculated by counting the number of occurences when the
power output is equal to CA − Cj divided by the total number
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of power output data points:4

pj =
[
# occurrences when power output is CA − Cj

Total # of power output data points

]
.

(23)
When a power output data point falls between two values of
CA − Cj , it is counted as an occurrence for the highest value.
Ideally, the chosen resolution should be small compared to the
wind plant’s nameplate capacity so that this approximation has
an insignificant impact on the final model.

In reality, multiple years of power output data should be used
to build the COIPT of the studied wind plant. In this case study,
only a full year of power output data from two different wind
plants was available: WP-1 of 113 MW nameplate capacity and
WP-2 of 230 MW nameplate capacity. Using this data, various
scenarios were created to test our method. In order to demon-
strate how the ELCC of a wind plant varies as its penetration
level increases, various levels were obtained by simply scaling
the actual power output data. The following equation was used

pCA
(t) =

pCO
(t) × CA

CO
(24)

where CA is the desired total capacity in megawatt of the scaled
wind plant (or the eventual additional generation), pCO

(t) is the
power output in megawatt at time t of the original wind plant
(WP-1 or WP-2) of capacity CO (113 or 230 MW), and pCA

(t) is
the power output in megawatt at time t of the scaled wind plant.
In this study, the penetration level is defined as a percentage
of the existing power system’s total capacity. Therefore, if the
added wind plant is 10 MW and the existing power system’s
total capacity is 100 MW, the penetration level will be [10 ÷
100] × 100% or 10%. The penetration levels studied are 2%
(55 MW), 5% (135 MW), 10% (270 MW), 15% (410 MW), and
20% (545 MW). These levels were created using both wind data
sets, which resulted in two 55 MW wind plants, two 135 MW
wind plants, two 270 MW wind plants, and so on; one created
from the WP-1 data and one created from the WP-2 data. A
COIPT is built for each of these ten wind plants using (23) with
a resolution of 1 MW. For example, Table I represents part of
the COIPT of a 55 MW wind plant using the power output data
of WP-1.

As explained in Section III, when classically computing a
wind plant’s ELCC, the wind plant’s COIPT must be combined
to the existing system’s COPT using (5) in order to obtain the
potential system’s COPT. Table II represents part of the COPT
for the 2783 MW system, which results from adding a 55 MW
wind plant to the existing 2728 MW system. Similar potential
system’s COPTs are built for the nine remaining wind plants.

Note that although the LOLE observation period is chosen to
be a full year in this case study, the interannual variability of
wind generation and its impact on a wind plant’s ELCC could
be captured by simply adjusting the COIPT in the calculations.
Indeed, a monthly or peak load COIPT could be constructed with
the appropriate wind plant’s power output data. Then, using the
corresponding load data when determining the existing system’s

4The occurrence of a capacity outage of Cj is equivalent to the occurrence
of a capacity in service, or power output, of CA − Cj .

TABLE I
COIPT FOR A 55-MW WIND PLANT USING WP-1 POWER OUTPUT DATA AND

A RESOLUTION OF 1 MW

TABLE II
COPT FOR A 2783 MW POWER SYSTEM INCLUDING A 55 MW WIND PLANT

USING WP-1 POWER OUTPUT DATA

m parameter, monthly or peak load ELCC estimates could be
computed from (21) and the adjusted COIPT.

C. Load Model

A typical load duration curve consisting of a full year of
hourly load data points was used in this analysis. This load
demand displays the usual summer and winter peaks and was
adjusted to ensure a LOLE of 1 day in 10 years (or 0.1 days per
year) for our existing power system.

D. Results

Before applying (21) to estimate the ELCC of the ten wind
plants described in Section V-B, the existing power system’s
m parameter must be determined graphically. Using (3), vari-
ous new load duration curves are created with shifting percent-
ages of −20%, −17.5%, −15%, . . .0%, +2.5%, . . .+20%. The
existent power system’s LOLE is computed for these 16 new
load duration curves in addition to the typical load duration
curve. Table III presents the resultant LOLE values with their
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TABLE III
EXISTING 2728 MW POWER SYSTEM’S LOLE

FOR VARIOUS LOAD DURATION CURVES

Fig. 1. Exponential relationship between the existing system’s LOLE and a
shifted increase or decrease in the typical load demand.

associated load duration curves. Although the peak load Lcp k

is used to represent the load duration curve Lc , the LOLE cal-
culations are performed using all the relevant5 hourly load data
points, not only the peak load.

The results from Table III are graphed to obtain a relationship
approximating the LOLE as a function of a shifted increase
or decrease in the typical load demand. Fig. 1 illustrates this
relationship between the existing system’s LOLE and the annual
peak load of each curve.

Using an exponential curve fitting tool in Fig. 1, the follow-
ing relationship is established attributing a value of 7.30788 ×
10−03 to the m parameter

LOLELp k = B × e7.30788×10−0 3 ×Lp k . (25)

5The relevant data points are determined by the chosen LOLE evaluation
period, which, in this case, is a full year.

Fig. 2. Comparing ELCC results from the classical method, noniterative ap-
proximation, and capacity factor approximation for (a) wind plants created from
WP-1 source data and for (b) wind plants created from WP-2 source data.

TABLE IV
COMPARISON OF ELCC RESULTS

Once the existing system’s m parameter is determined, (21) can
be applied to estimate the ELCC of the ten different wind plants
given their respective COIPT (Cj and pj values).

The resultant ELCC estimates must be compared to the clas-
sically computed ELCC values. To obtain these values, a COPT
is built for each of the ten potential power systems using (5).
Then, by an iterative process, (1) is solved for ∆L using the
typical load demand described in Section V-C for all LOLE
calculations. When the ∆L value of each wind plant is found,
(2) is used to compute the actual ELCC values. All the ELCC
results are illustrated in Fig. 2 where the wind plant’s capacity
factor is also included for comparison.

V. DISCUSSION

Table IV compares the ELCC results obtained from the case
study. The noniterative method quite accurately approximates
the classical method; it only slightly overestimates the ELCC
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by 1.4% to 2.5%. It gives consistent results for both sources of
power output data (WP-1 and WP-2). On the other hand, the
capacity factor approximation is only accurate at penetration
levels of 2%, with a relative error of about 4%; it becomes quite
inaccurate at higher penetration levels, reaching a relative er-
ror of nearly 60% for the wind plant penetration level of 20%.
Therefore, although the capacity factor approximation is conve-
nient because it does not require any reliability modeling, it is
not a good overall ELCC approximation. When system genera-
tion and load data are available, the noniterative approximation
is more appropriate; it produces more accurate ELCC estimates
for all penetration levels while requiring minimal reliability
modeling and computational efforts.

In summary, the advantages of using the noniterative approx-
imation are the following:

1) The only LOLE calculations needed are the ones per-
formed to determine the m parameter.

2) There is no need to build a generation reliability model,
or COPT, for the potential power system that includes the
additional wind plant.

3) There is no computationally-intensive iterative process to
solve for ∆L.

4) Only a simple function using basic operations is needed
to compute an accurate ELCC estimate.

Finally, if the actual ELCC value is needed, one could use the
resultant ∆L estimates as a starting point to reduce the number
of iterations required by the classical method.

VI. CONCLUSION

Inspired from Garver’s approximation and based on well-
known reliability concepts, a simple function was mathemat-
ically derived to compute ELCC estimates given the existing
power system’s graphically determined parameter as well as
the wind plant’s multistate probabilistic representation. Various
wind plants of penetration levels between 2% and 20% were
generated using two different sources of wind generation data.
A power system of 2728 MW was created from 16 different
conventional units and represented the existing power system
considering wind generation expansion. Using the proposed
noniterative method, the resultant ELCC estimates accurately
approximated the classically computed ELCC values with rela-
tive errors of only 1.4% to 2.5%. Although the capacity factor
approximation is a convenient method requiring no reliability
modeling, it was shown to produce inaccurate ELCC estimates
for wind plant penetration levels above 2% as relative errors
reached nearly 60% for wind plant penetration levels of 20%.
When system generation and load data is available, the noniter-
ative approximation is an appropriate method that yields excel-
lent ELCC estimates even at high penetration levels; it requires
minimal reliability modeling and no computationally-intensive
iterative process. As data become available, the authors will ap-
ply their method to other sources of variable output generation.
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